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INTRODUCTION

Relevance and Nature of Problem

One in 8 American women will develop breast cancer in her lifetime. Despite the advances in
detection and treatment of breast cancer, the mortality from breast cancer has not changed
significantly over the last forty years. Breast cancer treatments significantly include radiation
and chemotherapy. These regimens are acutely limited by the lack of ability to specifically
target tumor cells. The emotional state of the patient which could be a critical factor in
combating the disease is gravely debilitated by the psychosomatic trauma of these severe
treatment procedures. Even those patients that survive, face the possibility of remission and an
uncertain future. Unlike the survival after many other cancers, which tend to level off after 5
years, survival after diagnosis of breast cancer continues to decline. Even women who try to
make preventive life-style changes cannot alter the most significant risk factors like age or
family history. In this grim scenario, a basic understanding of the cellular processes underlying
breast cancer is mandated before effective therapies can be developed or even attempted.

P3-catenin is a multifunctional protein that primarily helps link the cadherins (at the adherens
junctions) to the cytoskeleton. However, 13-catenin is also a crucial signaling molecule that
participates in differentiation and proliferation pathways. The wnt signaling pathway, known to
reverse contact inhibition in mouse mammary cells in vitro and to cause mammary cancer in
mice (7), results in increased levels of cytoplasmic P-catenin (8). Wnt-1 stimulation results in
decreased activity of glycogen synthase kinase (GSK)-313, that normally phosphorylates the
tumor suppressor adenomatous polyposis coli (APC) gene product (8,9). When APC is not
phosphorylated, it leads to the stabilization of [-catenin. The stable 13-catenin interacts with the
transcriptional activators LEF/TCF (10). The 13-catenin-TCF/LEF complex translocates to the
nucleus and effects gene expression (1,2) . The genes activated may include those that stimulate
proliferation or antagonize apoptosis (11,12). And finally, stable forms of [3-catenin by
themselves are oncogenic (3,12,13). These observations strongly point towards the stability of
cytoplasmic P-catenin as a "smoking gun" (12) linking cell adhesion and tumorigenesis. Thus,
a strategy of down-regulating [-catenin could constitute a potential way of treating breast
cancer.
In this study, we investigate the regulation of cytoplasmic 3-catenin.

Background

13- Catenin and breast cancer

Cells touch one another through a number of different surface molecules; among the most
intriguing are the cadherins and their associated proteins (14). These proteins, in addition to
maintaining adhesion of adult tissues, via the adherens junctions, are critical during development
and tumorigenesis (15). Cadherin function has been shown to depend on several associated
proteins, namely; cc, P3, and (plakoglobin) y catenin (16). These molecules, link cadherins to the
actin cytoskeleton and are probably involved in relaying cadherin-mediated-contact signals (17).
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The P3-catenin/cadherin association requires serine phosphorylation of the cadherin molecule
(17). P3-catenin is itself a substrate for tyrosine phosphorylation and can also act as a link
between Growth factor receptors (such as the EGFR) and the adherens junction complex (18,19).
Mutation of the P-catenin gene in mice, by homologous recombination, results in embryonal
lethality. When the expression of E-cadherin and the catenins was analyzed in human breast
carcinomas, lobular breast carcinomas showed disturbances of E-cadherin and catenins in a high
frequency of cases (20). In ductal breast carcinomas (where E-cadherin is often unchanged), a
high frequency of cases showed disturbance of alpha- and/or gamma-catenin expression. 50 % of
cases with defects in E-cadherin and catenins had lymph node metastasis, whereas this number
was low in cases with undisturbed cadherin/catenin expression (20).
A truncated stable form of [3-catenin itself acts as an oncogene (9). The phosphorylation state of
P3-catenin can also influence the transformed phenotype (19,21). Further, cytoplasmic P-catenin
associates with the tumor suppressor adenomatous polyposis coli (APC) gene product (19).
Over-expression of APC results in the cell cycle being blocked at the G1/S boundary (19).
Recent evidence indicating that the tumor suppressor effects of APC are dependent upon its
ability to destabilize P-catenin, strongly argue the significance of P-catenin in the control of cell
proliferation (5,22).

3-catenin is a signaling molecule

f3-catenin participates in developmental

WgandWIsigrpaing patterning in Xenopus (23). Ectopic expression
of j3-catenin by mRNA injection into the ventral

Wg(D-•,, LWh(VqXoT) region of Xenopus embryos induces a secondary

SWh Z dorso-anterior body axis, giving rise to two
heads, notochords, and neural tubes (24). Wnt-1,

dsh dsh hanqgg the vertebrate homologue of wingless is known

zw3 APC to reverse contact inhibition in mouse mammary
cells in vitro and to cause breast cancer in mice
(24). Wnt-1 stimulation results in decreased

Tel/IT Td/tM activity of glycogen synthase kinase (GSK)-3j3,
h,,nV that normally phosphorylates the tumor

mwls011fio Ti~apfliol suppressor adenomatous polyposis coli (APC)

gene product (5,8). When APC is not
phosphorylated, it leads to the stabilization of 13-catenin through an unknown mechanism. Now,
13-catenin interacts with transcriptional activators LEF/TCF, translocates to the nucleus, and
effects gene expression (10,25). The genes activated may include those that stimulate
proliferation or antagonize apoptosis.
Taken together, these finding strongly argue the significance of P3-catenin and its cytoplasmic
levels in the integration of adhesion, differentiation and proliferation pathways. A clearer
understanding of this crucial signaling pathway holds tremendous potential to offer realistic
strategies to combat breast cancer.
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b3-catenin stability and APC

The Adenomatous polyposis Coli (APC) gene is a tumor suppressor, found mutated in most
human colon cancers. APC directly binds P3-catenin (26). APC is a part of the wnt signaling
pathway, and when phosphorylated by GSK3[3, down-regulates f3-catenin levels. Cancer cells
with mutant APC contain abnormally high levels of cytoplasmic f3-catenin (4,5). Over-
expression of APC blocks progression of the cell cycle from G. to the S phase (27). This
observation suggests that loss APC activity (resulting in P3-catenin stabilization ) could lead to
uncontrolled cellular proliferation. Indeed, the wnt signal, thought to inactivate APC, can cause
cell proliferation in certain tissues. Although APC has been primarily studied in colon cancer,
there is strong evidence that loss of heterozygosity at the APC locus may be involved in
mammary tumors in humans. The Multiple intestinal neoplasia (Min) allele is a mutant allele of
the murine APC locus. Min-/+ mice are predisposed not only to intestinal but mammary
carcinoma as well (7). Among Min-/+ mice exposed to carcinogenic material, over 75%
developed mammary tumors, while Min +/+ mice displayed no evidence of mammary tumors
(7). These observations suggest that APC, by virtue of its ability to regulate 13-catenin, can play
an important role in predisposing breast tissue for further hyperplastic events (11).

The ubiquitin-proteasome pathway

Our preliminary evidence demonstrates that the cvtoplasmic, "signaling pool" of D3-catenin is
regulated at the level of stability by the ubiquitin-proteasome pathway.
The ubiquitin-proteasome pathway is involved in the processing and rapid degradation of many
short-lived regulatory proteins. Mitotic cyclins, cyclin-dependent kinase inhibitors, the tumor
suppressor p53, transcriptional activators NF-KB, v-jun, and v-fos are examples of proteins that
are degraded by this highly specific pathway (28-31).

The ubiquitin pathway effects the
THE Ub-PROTEASOME SYSTEM degradation of proteins in two steps (28).

Peptides, El First, multiple ubiquitin moieties are
Amino acids, Ub Ub covalently attached to a target protein.

Second, the multi-ubiquitinated protein is
m OOdegraded by the 26S proteasome

complex. Conjugation of ubiquitin
O& (Ub.) Q moieties, to a substrate, is performed in a

three-step process. Following activation

of the C-terminal glycine of ubiquitin by
F enzyme El, one of several E2 enzymes

transfers the activated ubiquitin to the
substrate that is specifically bound to an enzyme E3.
E3 catalyzes the formation of an isopeptide bond between the activated glycine on the ubiquitin
and c-NH 2 group of a lysine residue in the substrate (or in the previously conjugated ubiquitin
moiety). The E2 and E3 enzymes bind the substrate, and help transfer the ubiquitin moieties.
There are dozens of genes, unrelated to each other, that encode E2 and E3 enzymes. The
specificity of the ubiquitin pathway is thought to reside in the E3 enzymes (28). Following
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targeting (e.g. phosphorylation, as in the case of NF-KB) and multi-ubiquitination, the substrate
protein is rapidly degraded by a large multi-subunit structure called the proteasome.

PURPOSE

The general aim of this investigation is to study the regulation of cytoplasmic j3-catenin stability,
and the involvement of the tumor suppressor APC in this process.

Our working model is that j3-catenin is recruited by a cadherin to the plasma membrane where
it is phosphorylated on serine residues (analogous to IKb). This phosphorylated 03-catenin can
either be recruited to an adhesion complex or can interact with APC via its armadillo domains.
In the presence of active GSK3P3, APC is phosphorylated and its E3 activity is activated. P-
catenin is also phosphorylated by GSK3P3. In response to these events, 03-catenin is ubiquitinated
and degraded by the proteasome. When APC or P3-catenin or both are mutated, the result is
accumulation of cytoplasmic 13-catenin. At elevated levels, cytoplasmic f3-catenin is oncogenic.

SPECIFIC AIMS (Years 1-2)
Year 1 (presented in annual report - 1996):
Aim 1. To test the hypothesis that cytoplasmic P3-catenin is regulated at the level of stability

by the ubiquitin-proteasome pathway.
Aim 2. To establish an in vitro cell-free model to study 13-catenin ubiquitination and

degradation
Year 2:
Aim 3. To test the hypothesis that the tumor suppressor adenomatous polyposis coli (APC)

is involved in the ubiquitin-proteasome pathway that regulates [-catenin stability
(Collaborator: Dr. Paul Polakis)

Aim 4. To test the hypothesis that the APC gene product is an ubiquitin-ligase (E3) that
ubiquitinates [-catenin and targets it for degradation by the proteasome
(Collaborators: Dr. Aaron Ciechanover, Dr. Allan Weissman, Dr. Richtor King)

METHODS

Aim 1. To test the hypothesis that cytoplasmic P3-catenin is regulated at the level of stability by
the ubiquitin-proteasome pathway.
"* The effect of proteasomal inhibitors on cytoplasmic 13-catenin stability was tested. The breast

cancer cell line SKBR3 (APC+/+) and the colon cancer cell line SW480 (APC-/-) were used
.in this experiment. Cells were treated with the proteasomal inhibitors (peptidyl aldehydes)
ALLN and Lactacystin (32) for 12 hr. Cells were lysed in a hypotonic lysis buffer and
dounce homogenized, clarified in a ultracentrifuge (100,000g for 1 hr) to yield the S100
cytoplasmic fraction (free of membranous components). To obtain cytoplasmic fractions
including membrane vesicles, the dounced lysate were clarified in a table-top microfuge
(10,000g for 10 min).

"* The half-life of P3-catenin in E36ts20 cells (33), that harbor a temperature sensitive El
.enzyme, was monitored at permissive and non-permissive temperatures
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SKBR3 cells were transient transfected with His6-tagged ubiquitin (34) and HA-tagged f3-
.catenin. Cells were treated with/without proteasomal inhibitors, ubiquitinated proteins were
purified with Ni-NTA columns (34), and Western blotted with anti-HA antibody (helps
distinguish from native 1-catenin).

Aim 2. To establish an in vitro cell-free model to study P-catenin ubiquitination and
degradation.
In vitro ubiquitination and degradation assays will be established according to published
protocols (29,35,36).
"* Recombinant P3-catenin was generated in a combined in vitro transcription-translation

system (Promega). mRNA synthesized from 2 ptg of template DNA was used in a 100 [tl
translation reaction mixture containing 50 tl of rabbit reticulocyte lysate (RRL).

"* Conjugation assays (29,35) are performed essentially as described by Dr. Ciechanover
(29,30,32). Briefly, the reaction mixture (30 tl) consisted of 1 pl of either programmed
RRL containing the HA-tagged P3 catenin or unprogrammed RRL, 10 p.l SKBR3 hypotonic
lysate (5-6 mg/ml) or, 20 ng El, 20 ng E2 (UbcH5b) and, either 40 ng E3 (E6-
AP)(recombinant enzymes were kindly provided by Dr. Allan Weissman) or 40 ng of
various APC deletion constructs. 5 ptg ubiquitin, 40 mM Tris HCl (pH 7.6), 5 mM MgCl2,

2mM DTT, 0.5 [tg of ubiquitin aldehyde (kindly provided by Dr. Keith Wilkinson), 5mM
ATPyS, 10mM Phosphocreatine, and 5 units Phosphocreatine Kinase, were also included in
the reaction mixture. In Assays without ATPyS, 20 mM EDTA, 0.5 [tg of hexokinase and
10 mM 2-deoxyglucose substituted for ATPyS. Ubiquitination assays were performed for a
.1 hr period at 25°C. Degradation assays included ATP (instead of ATP3yS, which cannot be
used by the proteasome but can be utilized by the ubiquitination enzymes), and were
performed at 370C for 2 hr. Following incubation, reaction mixtures are resolved by Tris-
glycine SDS-PAGE (4-12%).

"* Western blotting was performed using anti-HA (BabCo) and anti-13-catenin antibodies
(Transduction labs).

Aim 3. To test the hypothesis that the tumor suppressor adenomatous polyposis coli (APC) gene
product is involved in the ubiquitin-proteasome pathway that regulates 13-catenin.
"* In vitro ubiquitination assay with SW480 (APC-/-) cytoplasmic fraction and recombinant

APC constructs with/without the HECT consensus.
" Test the effects of alkylating agents (alkylating agents like N-ethyl maleimide (NEM) block

the free cysteine residues necessary for the thiol-ester transfer of ubiquitin) (36) on the ligase
activity of recombinant APC

" Transient transfection of SW480 (APC-/-) cells with APC (4), monitor cytoplasmic 13-catenin
levels in response to proteasomal inhibitors.

SW480 cells (APC-/-) were co-transfected with a vector encoding His6-tagged ubiquitin (34) and
vector encoding APC 25 (4) (the smallest construct including the free cysteine consensus) or
vector alone, using LipofectamineTM (GIBCO) according to manufacturer's instructions.. 24 hr
after transfection, the cells were treated with the proteasome-specific inhibitor, Lactacystin for
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6hr. Ubiquitinated proteins were purified by Ni-NTA chromatography, and Western blotted with
anti-1-catenin antibody

Aim 4. To test the hypothesis that the APC gene product is an ubiquitin-ligase (E3)
* In vitro reconstitution experiments (35-37) with recombinant 13-catenin, El, E2, and various

APC constructs with/without the HECT consensus.

RESULTS

Aim 1. To test the hypothesis that cytoplasmic 13-catenin is regulated at the level of stability by
the ubiquitin-proteasome pathway.
1. Results indicate that treatment of SKBR3 cells with proteasomal inhibitors ALLN and
Lactacystin (32) result in the accumulation of high-molecular weight, 1-catenin-ubiquitin
conjugates in the cytoplasm (Addenda; Fig. 1 ).
2. E36ts20 cells harboring a thermolabile Ubiquitin activating (El) enzyme (33), when grown at
the non-permissive temperature (39.5 0C) accumulate [-catenin (half-life is extended, compared
to cells grown at the permissive temperature; 30'C ) (Fig. 2).
3. In a more direct approach, SKBR3 cells were co-transfected with a vector encoding His6-
tagged ubiquitin (34) and a vector encoding HA-tagged 13-catenin (Fig. 3). 48 hr after
transfection, the cells were treated with the proteasome specific inhibitor, Lactacystin, for 6 hr.
Ubiquitinated proteins were purified by Ni-NTA chromatography (34) and Western blotted with
anti-HA antibody (Fig. 4 ). 13-catenin was found to accumulate as high- molecular weight
ubiquitinated conjugates, in response to the proteasome-specific inhibitor Lactacystin.
These observations demonstrate that cytoplasmic 13-catenin is regulated at the level of stability by
the ubiquitin-proteasome pathway.

Aim 2. To establish an in vitro cell-free model to study 1-catenin ubiquitination and
degradation.
In vitro ubiquitination and degradation assays were established according to published
protocols (29,35,36) and with the help of our collaborators Drs. Aaron Ciechanover and Allan
Weissman.
1. Cytosol that included membrane and/or particulate material was able to ubiquitinate P3-
catenin more efficiently than a S100 preparation that lacked them (Fig. 5).
2. Cytosol extracted from cells in different phases of the cell cycle, strikingly varied in their
ability to ubiquitinate 13-catenin (Fig. 6).
3. The most efficient ubiquitination activity was observed in the extracts from cells in M-phase
(Fig. 6).

Aim 3. To test the hypothesis that the tumor suppressor adenomatous polyposis coli (APC) gene
product is involved in the ubiquitin-proteasome pathway that regulates P-catenin.
1. Recombinant APC constructs help degrade f3-catenin in SW480 (APC-/-) cell lysate, in vitro.
APC constructs 4 and 25 (Fig.8) include a free-cysteine-HECT consensus of ubiquitin ligases,
whereas APC 3 does not. Lane 6; In the presence of a proteasomal inhibitor, a high molecular
weight band is observed, which probably is a mono-ubiquitinated P3-catenin (Fig. 10).
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2.Anti-APC antibodies and N-ethyl Maleimide (NEM) (4) inhibit the ubiquitination of j3-
catenin, in vitro (Fig. 9 ).
3. In SW480 cells transfected with APC (Fig. 11), 13-catenin was found to be stabilized as
ubiquitinated conjugates, in response to lactacystin, a specific proteasomal inhibitor. In cells
transfected with vector alone, the proteasomal inhibitor had no effect. However, in Lane 6, the
APC 3 transfection did not seem to have worked well in this particular experiment. Further
experiments monitoring the effect of vectors including APC constructs that lack the HECT
domain are currently in progress.

Aim 4. To test the hypothesis that the APC gene product is an ubiquitin-ligase (E3)
In vitro reconstitution experiments with recombinant P3-catenin, El, E2, and various recombinant
APC fragments (with/without the HECT consensus) have proved to be elusive and efforts to
standardize reaction conditions continue with the help of Dr. Allan Weissman (NIICB, NIH).

Conclusions

1. Cytoplasmic 13-catenin is regulated at the level of stability by the ubiquitin-proteasome
pathway.

2. In vitro, cytosol that included membrane and/or particulate material ubiquitinated 13-catenin
more efficiently than a S100 preparation that lacked them.

3. Cytoplasmic extracts from M-phase cells displayed maximal ability to ubiquitinate
P3-catenin, in vitro.

4. Anti-APC antibodies and N-ethyl Maleimide (NEM) inhibit the ubiquitination of
P3-catenin, in vitro

5. Recombinant APC constructs help degrade 13-catenin in SW480 (APC-/-) cell lysate,
in vitro.

6. In SW480 cells transfected with APC, P3-catenin is stabilized as ubiquitinated
conjugates, in response to a proteasome specific inhibitor.

Recommended Changes

The above observations lead to the question, "Do changes in physiologically relevant signaling,
i.e. GSK3 3 activity, lead to changes in the ubiquitin-proteasomal turnover of f3-catenin?"
We hope to partially answer this question in vivo, by studying changes in P3-catenin turnover in
cells treated with inhibitors of GSK3P3 activity, like Rapamycin and Wortmannin. Further
analysis of GSK3P3 activity, its effect on APC phosphorylation, and subsequent effects on P3-
catenin ubiquitination and stability will be addressed using the in vitro assays described below.
For these experiments, pre-phosphorylated APC, de-phosphorylated APC, with/without purified
GSK3 P, and GSK3 P inhibitory peptides will be used (these reagents were kindly provided by our
collaborator Dr. Paul Polakis).
Preliminary studies on the cell cycle dependent fluctuations of P3-catenin, APC, and GSK3P3 are
currently in progress.
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ADDENDA
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Figure 1. P3-catenin accumulates as high- molecular weight ubiquitinated conjugates, in response to the

proteasomal inhibitor ALLN and Lactacystin. ALLM is the negative control.

In the right panel, [-catenin was immunoprecipitated with a C-terminal monoclonal antibody from a NP-40

lysate, and Western blotted with anti-ubiquitin antibody. NI: Non-Immune, 13: P3-catenin.
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Figure 2. Pulse chase in E36ts20 cells harboring a thermolabile Ubiquitin activating (El) enzyme. When

grown at the non-permissive temperature, the half-life of P3-catenin is extended.
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EXPERIMENTAL DESIGN:

SKBR3 Co- transfection
SHis 6 - Ub,

0. HA - 13-catenin (wt)

+1- Proteasomal inhibitor
4

Ni - NTA
Affinity chromatography

4
Anti-HA Western blot

Figure 3. Experimental design to test the hypothesis that cytoplasmic P3-catenin is regulated at the level of
stability by the ubiquitin-proteasome pathway.

No Tx. + Lactacystin

- 97kD

Anti - HA Western Blot

Figure 4. P3-catenin accumulates as high- molecular weight ubiquitinated conjugates, in response to the
proteasomal inhibitor Lactacystin.

17



+Ub+ ATPyS

1 hr

S.-

: rU

- 220 kD

wE.,w, 97

Vesc. S100
Lysate

Figure 5. In vitro P-catenin ubiquitination assay. Cytosol that included membrane material (vesicular
lysate) ubiquitinated P3-catenin more efficiently than a S100 preparation that lacked them.
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Figure 6. In vitro 13-catenin ubiquitination assay. Cytosol extracted from cells in different phases of the

cell cycle, strikingly varied in their ability to ubiquitinate P3-catenin. The most efficient ubiquitination

activity was observed in the extracts from cells in M-phase.
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Figure 7.

The second 3-catenin binding repeat of APC contains a free cysteine
consensus region present in the
HECT family ubiquitin ligases
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Figure 8.
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Figure 9. In vitro degradation assay. Anti-APC antibodies and N-ethyl maleimide (NEM) inhibit the in

vitro degradation P3-catenin

Anti P3-catenin Western blot

Figure 10. In vitro 13-catenin ubiquitination assay. Recombinant APC constructs help degrade P-catenin in

SW480 (APC-/-) cell lysate, in vitro. Constructs 4, 25, and 2 include a free-cysteine-HECT consensus of

ubiquitin ligases. APC 3 does not. Lane 6; In the presence of a proteasomal inhibitor, a high molecular

weight band is observed, which probably is a mono-ubiquitinated P3-catenin
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EXPERIMENTAL DESIGN:

SW480
Co- transfection
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Figure 11. SW480 cells (APC-/-) were co-transfected with a vector encoding His6-tagged ubiquitin and a

vector encoding APC 25 (the smallest construct including the free cysteine consensus) , APC 3, or vector

alone. 24 hr after transfection, cells were treated with the proteasome-specific inhibitor, Lactacystin for 6 hr.

Ubiquitinated proteins were purified by Ni-NTA chromatography, and Western blotted with anti-j3-catenin

antibody. In cells transfected with APC 25, P-catenin was found to be stabilized as ubiquitinated conjugates,

in response to a specific proteasomal inhibitor. In cells transfected with vector alone, the proteasomal

inhibitor had no effect probably because the native ubiquitination machinery is not functional. Lane 6; the

APC 3 transfection did not seem to have worked well in this particular experiment. Experiments monitoring

the effect of vectors including APC constructs that lack the HECT domain are currently in progress.
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